Filovirus rVSV Vaccines

- Michael A. Egan, Ph.D.
- Director of Immunology
Presentation Outline:

1.) Background on the Vesiculovax™ Vaccine Platform

2.) Ability of a Single Dose Tri-valent Vesiculovax™ panFilo Vaccine to protect against EBOV, SUDV and MARV challenge

3.) Phase I Safety and Immunogenicity of the mono-valent Vesiculovax™ EBOV Vaccine

4.) Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

5.) Future Plans
Presentation Outline:

1.) Background on the VesiculoVax™ Vaccine Platform

2.) Ability of a Single Dose Tri-valent VesiculoVax™ panFilo Vaccine to protect against EBOV, SUDV and MARV challenge

3.) Phase I Safety and Immunogenicity of the mono-valent VesiculoVax™ EBOV Vaccine

4.) Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

5.) Future Plans
VesiculoVax™: A Family of Vaccine Vectors

RNA genome:
- Nonsegmented, single-stranded, negative-sense

Components of the virus:
- Nucleocapsid
- Phosphoprotein
- Matrix protein
- G protein
- Large protein (RNA Pol)

G protein:
- Mediates cell attachment
- Target of neutralizing antibodies

Envelope RNA genome

1. Nucleocapsid
2. Phosphoprotein
3. Matrix protein
4. G protein
5. Large protein (RNA Pol)
The Vesiculovirus mRNA Transcriptional Gradient

mRNA transcription (+) genome synthesis

Intergenic Stop/Start

N P M G L
Using the Vesiculovirus mRNA Transcriptional Gradient to Attenuate the Vector and Overexpress a Gene of Interest

mRNA transcription (+) genome synthesis

N gene shuffle

Truncation of G protein cytoplasmic tail (CT1)
VesiculoVax™ Vectored Vaccines

Single Stranded/Non-segmented/Negative-sense RNA Viruses

* Small simple genome, large capacity for inserting multiple foreign genes
* Modulation of antigen expression controlled by gene position
* Synergistic attenuating mutations:
 * [N gene shuffle (N4) & G protein CT truncation (CT1)]
* Family of non-cross-reactive (both B and T cell) vectors
 * Four reduced to practice and three under development

Immunogenicity

* Replication competent vectors
* Targets antigen-presenting cells
* Attenuating mutations increase immunogenicity

Manufacturing

* Propagates efficiently in PBS certified Vero production cell line
* GMP Manufacturing and purification processes in place

Vector Immunity

* Little pre-existing immunity in the human population
* Clinical demonstration of effective homologous boosting
VesiculoVax™ Vectored Vaccines

rVSV N4CT1 Clinical Status

- **HVTN-090**
 - FIM dose escalation, N=60, 10^4 – 10^8 PFU
 - 100% seroconversion, 63% ELISpot response rate, **homologous boosting induces anamnestic response**
 - Safe and well tolerated, no vaccine-related SAE

- **HVTN-087**
 - pDNA prime / rVSV boost, N=100, 10^8 PFU
 - 92% CD4 ICS response rate, 58% CD8 ICS response rate, highest ICS response rate in any HVTN trial
 - Safe and well tolerated, no vaccine-related SAE

- **TheraVax**
 - pDNA prime / rVSV boost, N=30, 10^7 PFU
 - Study is on-going
 - Safe and well tolerated, no vaccine-related SAE

- **HVTN-112**
 - pDNA prime / rVSV boost, N=15, 10^7 PFU
 - Study is on-going

- **EBOV-001**
 - FIM dose escalation, N=39, 10^4 – 10^6 PFU
 - Study is on-going
Presentation Outline:

1.) Background on the Vesiculovax™ Vaccine Platform

2.) Ability of a Single Dose Tri-valent Vesiculovax™ panFilo Vaccine to protect against EBOV, SUDV and MARV challenge

3.) Phase I Safety and Immunogenicity of the mono-valent Vesiculovax™ EBOV Vaccine

4.) Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

5.) Future Plans
rVSV Vectored Tri-Valent Filovirus Vaccine Candidate

rVSVN4CT1-panFiloGP
Single Dose NHP Immunogenicity/Efficacy Trial of Tri-Valent rVSVN4CT1-panFilovirus Vaccine

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Group</th>
<th>Vaccine</th>
<th>Dose (PFU)</th>
<th>Animals</th>
<th>Vacc. Day</th>
<th>1,000 PFU IM Virus Challenge Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Tri-val N4CT1 panFilovirus(a1)</td>
<td>3×10^7</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>N4CT1-HIVgag(s1)</td>
<td>3×10^7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Tri-val N4CT1 panFilovirus(a1)</td>
<td>3×10^7</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>N4CT1-HIVgag(s1)</td>
<td>3×10^7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Tri-val N4CT1 panFilovirus(a1)</td>
<td>3×10^7</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>N4CT1-HIVgag(s1)</td>
<td>3×10^7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Efficacy of a Single Dose Tri-Valent rVSVN4CT1-panFilovirus Vaccine in NHPs

Low Passage 7U EBOV Challenge
1,000 PFU IM

Low Passage SUDV Challenge
1,000 PFU IM

Low Passage MARV Challenge
1,000 PFU IM

Day post challenge

% Survival

rVSVN4CT1-panFiloGP (N=5)
rVSVN4CT1-HIVgag (N=2)

rVSVN4CT1-panFiloGP (N=5)
rVSVN4CT1-HIVgag (N=2)

rVSVN4CT1-panFiloGP (N=5)
rVSVN4CT1-HIVgag (N=2)
Presentation Outline:

1.) Background on the VesiculoVax™ Vaccine Platform

2.) Ability of a Single Dose Tri-valent VesiculoVax™ panFilo Vaccine to protect against EBOV, SUDV and MARV challenge

3.) Phase I Safety and Immunogenicity of the mono-valent VesiculoVax™ EBOV Vaccine

4.) Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

5.) Future Plans
A Phase 1 Clinical Trial to Evaluate the Safety and Immunogenicity of a Monovalent Ebola Zaire Vaccine (rVSVN4CT1-EBOVGP1) Delivered by Intramuscular Injection in Healthy Adult Subjects

IND No.: BB-IND-16670

Phase: 1
Protocol Number: rVSV-EBOV-01
Protocol Number: rVSV-EBOV-01

Phase 1 Dose Escalation and Vaccination Schedule in Months (Days)

<table>
<thead>
<tr>
<th>Study Arm</th>
<th>N</th>
<th>Dose</th>
<th>Month 0 (Day 0)</th>
<th>Month 1 (Day 28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>10</td>
<td>2.5 x 10⁴ PFU</td>
<td>rVSVN4CT1-EBOVGP1</td>
<td>rVSVN4CT1-EBOVGP1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>control (saline)</td>
</tr>
<tr>
<td>Group 2</td>
<td>10</td>
<td>2.5 x 10⁵ PFU</td>
<td>rVSVN4CT1-EBOVGP1</td>
<td>rVSVN4CT1-EBOVGP1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>control (saline)</td>
</tr>
<tr>
<td>Group 3</td>
<td>10</td>
<td>2.0 x 10⁶ PFU</td>
<td>rVSVN4CT1-EBOVGP1</td>
<td>rVSVN4CT1-EBOVGP1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>control (saline)</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>—</td>
<td>control (saline)</td>
<td>control (saline)</td>
</tr>
</tbody>
</table>

Notes: All immunizations will be administered IM in the deltoid; for Groups 1 and 2 each dose will be delivered bilaterally as 2 x 0.5 mL inoculations, and for Group 3 as 2 x 1.0 mL inoculations; CoA = Certificate of Analysis; PFU = plaques forming units.
Protocol Number: rVSV-EBOV-01: Adverse Events

Injection site pain/tenderness

- Vax1 Cohort 1: Grade 1 = 0, Grade 2 = 2
- Vax2 Cohort 1: Grade 1 = 4, Grade 2 = 0
- Vax1 Cohort 2: Grade 1 = 5, Grade 2 = 2
- Vax2 Cohort 2: Grade 1 = 4, Grade 2 = 6
- Vax1 Cohort 3: Grade 1 = 6, Grade 2 = 7
- Vax2 Cohort 3: Grade 1 = 0, Grade 2 = 0

13 subjects/16 related AEs

Nausea

- Vax1 Cohort 1: Grade 1 = 0, Grade 2 = 0
- Vax2 Cohort 1: Grade 1 = 0, Grade 2 = 0
- Vax1 Cohort 2: Grade 1 = 0, Grade 2 = 0
- Vax2 Cohort 2: Grade 1 = 0, Grade 2 = 0
- Vax1 Cohort 3: Grade 1 = 3, Grade 2 = 5
- Vax2 Cohort 3: Grade 1 = 0, Grade 2 = 0

3 subjects/7 related, 1 unlikely related AEs

Diarrhea

- Vax1 Cohort 1: Grade 1 = 0, Grade 2 = 0
- Vax2 Cohort 1: Grade 1 = 0, Grade 2 = 0
- Vax1 Cohort 2: Grade 1 = 0, Grade 2 = 2
- Vax2 Cohort 2: Grade 1 = 0, Grade 2 = 2
- Vax1 Cohort 3: Grade 1 = 0, Grade 2 = 2
- Vax2 Cohort 3: Grade 1 = 0, Grade 2 = 0

3 subjects/3 related, 1 unlikely related AEs

Fever

- Vax1 Cohort 1: Grade 1 = 0, Grade 2 = 0
- Vax2 Cohort 1: Grade 1 = 0, Grade 2 = 0
- Vax1 Cohort 2: Grade 1 = 0, Grade 2 = 0
- Vax2 Cohort 2: Grade 1 = 0, Grade 2 = 0
- Vax1 Cohort 3: Grade 1 = 0, Grade 2 = 4
- Vax2 Cohort 3: Grade 1 = 0, Grade 2 = 0

4 subjects/4 related AEs

From blinded data (Active and Placebo), excluding AEs considered unrelated.
Protocol Number: rVSV-EBOV-01: Adverse Events

Arthralgia

- **Cohort 1**: 11 AEs
- **Cohort 2**: 1 AE
- **Cohort 3**: 2 AEs

- **Grade 1**: 5 AEs
- **Grade 2**: 6 AEs

2 subjects/2 related AEs

Muscle pain/Myalgia

- **Cohort 1**: 7 AEs
- **Cohort 2**: 3 AEs
- **Cohort 3**: 0 AEs

- **Grade 1**: 2 AEs
- **Grade 2**: 6 AEs

3 subjects/3 related AEs

Bruise/Erythema

- **Cohort 1**: 1 AE
- **Cohort 2**: 2 AEs
- **Cohort 3**: 2 AEs

- **Grade 1**: 2 AEs
- **Grade 2**: 1 AE

2 subjects/3 related AEs

Increased WBC

- **Cohort 1**: 3 AEs
- **Cohort 2**: 2 AEs
- **Cohort 3**: 2 AEs

- **Grade 1**: 1 AE
- **Grade 2**: 2 AEs

2 subjects/3 unlikely related AEs
Protocol Number: rVSV-EBOV-01

Detection of Disseminated Vaccine Virus (Blinded)

<table>
<thead>
<tr>
<th>Sample Day</th>
<th>Blood</th>
<th>Urine</th>
<th>Saliva</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Prime)</td>
<td>RT-qPCR (LOQ=1.36x10³ copies/mL)</td>
<td>Culture Confirmed (LOD=100 PFU/0.1 mL)</td>
<td>RT-qPCR (LOQ=8.30x10² copies/mL)</td>
</tr>
<tr>
<td>1</td>
<td>0/39</td>
<td>NA</td>
<td>0/39</td>
</tr>
<tr>
<td>3</td>
<td>0/39</td>
<td>NA</td>
<td>0/39</td>
</tr>
<tr>
<td>7</td>
<td>0/39</td>
<td>NA</td>
<td>0/39</td>
</tr>
<tr>
<td>14</td>
<td>0/39</td>
<td>NA</td>
<td>0/39</td>
</tr>
<tr>
<td>28 (Boost)</td>
<td>0/39</td>
<td>NA</td>
<td>0/39</td>
</tr>
<tr>
<td>29</td>
<td>0/38</td>
<td>NA</td>
<td>0/38</td>
</tr>
<tr>
<td>31</td>
<td>0/38</td>
<td>NA</td>
<td>0/38</td>
</tr>
<tr>
<td>35</td>
<td>0/38</td>
<td>NA</td>
<td>0/38</td>
</tr>
<tr>
<td>42</td>
<td>0/38</td>
<td>NA</td>
<td>0/38</td>
</tr>
<tr>
<td>56</td>
<td>0/38</td>
<td>NA</td>
<td>0/38</td>
</tr>
</tbody>
</table>

Notes:
- RT-qPCR values refer to LOD=100 PFU/0.1 mL.
- Culture confirmed values refer to LOD=100 PFU/0.1 mL.
- Sample Day 1 is marked with a red box and noted as "1³/39 Neg."
Protocol Number: rVSV-EBOV-01

EBOV GP-specific ELISpot analysis conducted by Profectus BioSciences

Cryo-preserved PBMCs were collected at the following time points for ELISpot analysis:

- Visit 2: Day of 1st vaccination
- Visit 5: 1 week post 1st vaccination
- Visit 6: 2 weeks post 1st vaccination
- Visit 7: Day of 2nd vaccination
- Visit 10: 1 week post 2nd vaccination
- Visit 11: 2 weeks post 2nd vaccination
- Visit 12: 4 weeks post 2nd vaccination
- Visit 13: 22 weeks post 2nd vaccination
Protocol Number: rVSV-EBOV-01

BLINDED EBOV GP-specific cell mediated immune (CMI) responses over time by IFN-gamma ELISpot assay

<table>
<thead>
<tr>
<th>Groups</th>
<th>ELISpot Response (SFC/10⁶ PBMCs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp 1:</td>
<td>2.5x10⁴ PFU</td>
</tr>
<tr>
<td>Grp 2:</td>
<td>2.5x10⁵ PFU</td>
</tr>
<tr>
<td>Grp 3:</td>
<td>2.0x10⁶ PFU</td>
</tr>
</tbody>
</table>

Human ELISpot assay positivity criteria:
- ≥ Assay LOB (80 SFC/10⁶ PBMCs for EBOV GP)
- ≥ 2x baseline visit 2 response
Protocol Number: rVSV-EBOV-01

EBOV GP-specific ELISA analysis conducted by Battelle

Serum was collected at the following time points for ELISA analysis:

- **Visit 2:** Day of 1st vaccination
- **Visit 5:** 1 week post 1st vaccination
- **Visit 6:** 2 weeks post 1st vaccination
- **Visit 7:** Day of 2nd vaccination
- **Visit 10:** 1 week post 2nd vaccination
- **Visit 11:** 2 weeks post 2nd vaccination
- **Visit 12:** 4 weeks post 2nd vaccination
- **Visit 13:** 22 weeks post 2nd vaccination
Protocol Number: rVSV-EBOV-01

EBOV GP-specific ELISA responses

Cohort #1: 2.5x10^4 PFU dose level

Study 3671-100062783
Friday, November 11, 2016

QA Reviewed ELISA Data

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Visit 2</th>
<th>Visit 5</th>
<th>Visit 6</th>
<th>Visit 7</th>
<th>Visit 8</th>
<th>Visit 9</th>
<th>Visit 10</th>
<th>Visit 11</th>
<th>Visit 12</th>
<th>Visit 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-001</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.77</td>
<td>296.76</td>
<td>359.06</td>
<td>224.23</td>
<td>166.76</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-002</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>94.43</td>
<td>1151.41</td>
<td>1368.36</td>
<td>989.06</td>
<td>173.17</td>
<td>764.14</td>
<td>0.00</td>
</tr>
<tr>
<td>101-003</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>77.26</td>
<td>834.90</td>
<td>1156.26</td>
<td>911.86</td>
<td>113.92</td>
<td>2422.92</td>
<td>0.00</td>
</tr>
<tr>
<td>101-004</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>336.14</td>
<td>1234.69</td>
<td>1221.93</td>
<td>1581.51</td>
<td>764.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-005</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>842.88</td>
<td>1448.94</td>
<td>754.44</td>
<td>113.92</td>
<td>2422.92</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-006</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>235.38</td>
<td>1066.67</td>
<td>2424.52</td>
<td>1676.85</td>
<td>508.24</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-007</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>651.36</td>
<td>1785.12</td>
<td>1936.73</td>
<td>647.01</td>
<td>66.90</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-008</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>651.36</td>
<td>1785.12</td>
<td>1936.73</td>
<td>647.01</td>
<td>1176.90</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-009</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>651.36</td>
<td>1785.12</td>
<td>1936.73</td>
<td>647.01</td>
<td>1176.90</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-010</td>
<td>0.00</td>
<td>0.00</td>
<td>54.81</td>
<td>205.51</td>
<td>2385.83</td>
<td>3162.68</td>
<td>1535.62</td>
<td>122.81</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-012</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>217.22</td>
<td>447.36</td>
<td>415.22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

AVG | 0.00 | 0.00 | 4.22 | 130.84 | 909.78 | 1232.96 | 912.34 | 424.29 |

SE | 0.00 | 0.00 | 4.22 | 52.95 | 222.12 | 291.59 | 248.51 | 193.61 |

Responder Freq 10 of 13 (77%)
Protocol Number: rVSV-EBOV-01

EBOV GP-specific ELISA responses

Cohort #2: 2.5x10^5 PFU dose level

QA Reviewed ELISA Data

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Visit 2</th>
<th>Visit 5</th>
<th>Visit 6</th>
<th>Visit 7</th>
<th>Visit 10</th>
<th>Visit 11</th>
<th>Visit 12</th>
<th>Visit 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-015</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>119.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-016</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>286.47</td>
<td>677.04</td>
<td>1001.72</td>
<td>633.79</td>
<td>229.18</td>
</tr>
<tr>
<td>101-017</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-018</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-021</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>172.17</td>
<td>1712.36</td>
<td>2726.14</td>
<td>2156.22</td>
<td>550.31</td>
</tr>
<tr>
<td>101-022</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>155.56</td>
<td>1928.72</td>
<td>3896.73</td>
<td>2053.26</td>
<td>623.20</td>
</tr>
<tr>
<td>101-023</td>
<td>71.55</td>
<td>89.94</td>
<td>162.74</td>
<td>273.88</td>
<td>2490.43</td>
<td>3833.38</td>
<td>1799.97</td>
<td>309.77</td>
</tr>
<tr>
<td>101-024</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>563.88</td>
<td>9704.14</td>
<td>13522.67</td>
<td>4183.83</td>
<td>639.84</td>
</tr>
<tr>
<td>101-025</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>135.56</td>
<td>246.09</td>
<td>276.02</td>
<td>241.48</td>
</tr>
<tr>
<td>101-026</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-027</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>197.02</td>
<td>1293.67</td>
<td>7727.87</td>
<td>5015.19</td>
<td>3718.28</td>
</tr>
<tr>
<td>101-029</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>473.86</td>
<td>2792.56</td>
<td>4611.89</td>
<td>2869.49</td>
<td>327.92</td>
</tr>
<tr>
<td>101-030</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>329.61</td>
<td>841.81</td>
<td>1089.97</td>
<td>663.62</td>
<td>266.86</td>
</tr>
</tbody>
</table>

AVG
5.50
6.92
27.67
282.20
2334.21
2995.31
1529.54
467.50

SE
5.50
6.92
18.84
98.54
878.44
1061.68
414.03
181.81

Responder Freq
10 of 13 (77%)
Protocol Number: rVSV-EBOV-01

EBOV GP-specific ELISA responses

Cohort #3: 2.0x10⁶ PFU dose level

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Visit 2</th>
<th>Visit 5</th>
<th>Visit 6</th>
<th>Visit 7</th>
<th>Visit 10</th>
<th>Visit 11</th>
<th>Visit 12</th>
<th>Visit 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-032</td>
<td>0.00</td>
<td>0.00</td>
<td>75.12</td>
<td>159.13</td>
<td>2900.37</td>
<td>5873.97</td>
<td>5917.56</td>
<td>0.00</td>
</tr>
<tr>
<td>101-034</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-035</td>
<td>0.00</td>
<td>0.00</td>
<td>219.80</td>
<td>594.28</td>
<td>23406.12</td>
<td>6059.19</td>
<td>4413.87</td>
<td>459.59</td>
</tr>
<tr>
<td>101-036</td>
<td>0.00</td>
<td>0.00</td>
<td>140.96</td>
<td>390.89</td>
<td>8953.39</td>
<td>34705.93</td>
<td>15424.24</td>
<td>2372.94</td>
</tr>
<tr>
<td>101-037</td>
<td>0.00</td>
<td>0.00</td>
<td>82.37</td>
<td>317.43</td>
<td>2381.69</td>
<td>4542.56</td>
<td>1953.16</td>
<td>307.52</td>
</tr>
<tr>
<td>101-038</td>
<td>0.00</td>
<td>0.00</td>
<td>64.98</td>
<td>151.93</td>
<td>3284.03</td>
<td>2464.43</td>
<td>2045.51</td>
<td>517.12</td>
</tr>
<tr>
<td>101-039</td>
<td>0.00</td>
<td>0.00</td>
<td>1225.45</td>
<td>1365.95</td>
<td>14570.96</td>
<td>6982.50</td>
<td>6353.86</td>
<td>1373.12</td>
</tr>
<tr>
<td>101-042</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>155.82</td>
<td>2707.41</td>
<td>5911.33</td>
<td>2958.91</td>
<td>285.57</td>
</tr>
<tr>
<td>101-043</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-044</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101-045</td>
<td>0.00</td>
<td>0.00</td>
<td>457.43</td>
<td>971.22</td>
<td>31026.51</td>
<td>11181.75</td>
<td>26349.20</td>
<td>1258.11</td>
</tr>
<tr>
<td>101-046</td>
<td>0.00</td>
<td>0.00</td>
<td>379.85</td>
<td>1268.24</td>
<td>30172.53</td>
<td>13303.51</td>
<td>10085.23</td>
<td>1004.14</td>
</tr>
<tr>
<td>101-049</td>
<td>0.00</td>
<td>0.00</td>
<td>146.16</td>
<td>1614.27</td>
<td>11170.07</td>
<td>10175.08</td>
<td>5596.04</td>
<td>972.91</td>
</tr>
</tbody>
</table>

| AVG | 0.00 | 0.00 | 214.78 | 537.63 | 10044.08| 7784.63 | 6238.27 | 712.59 |
| SE | 0.00 | 0.00 | 93.43 | 159.03 | 3161.09 | 2536.74 | 2073.85 | 198.16 |

Responder Freq 10 of 13 (77%)
Protocol Number: rVSV-EBOV-01

BLINDED Mean EBOV GP-specific ELISA responses over time

<table>
<thead>
<tr>
<th>Group</th>
<th>PFU</th>
<th>Responder Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp 1</td>
<td>2.5×10^4</td>
<td>10 of 13 (77%)</td>
</tr>
<tr>
<td>Grp 2</td>
<td>2.5×10^5</td>
<td>9 of 12 (75%)</td>
</tr>
<tr>
<td>Grp 3</td>
<td>2.0×10^6</td>
<td>10 of 13 (77%)</td>
</tr>
</tbody>
</table>
rVSV-EBOV-01 Summary

- **Safe and well-tolerated at all tested doses**
 - No vaccine-related AEs greater than grade 2
 - 13/39 reported mild to moderate injection site tenderness
 - No other AEs reported in more than 5/39 subjects
 - Vaccine shedding:
 - 1 blood sample PCR positive, culture negative
 - PCR and culture of urine and saliva, universally negative

- **Immunogenic at all tested doses and blinded data consistent with:**
 - CMI responses by IFNγ ELISpot
 - Response rates of 60-80% post dose 1 and 80-90% post dose 2
 - Antibody responses by ELISA
 - Response rates of 70-100% post dose 1 and 100% post dose 2
Presentation Outline:

1.) Background on the VesiculoVax™ Vaccine Platform

2.) Ability of a Single Dose Tri-valent VesiculoVax™ panFilo Vaccine to protect against EBOV, SUDV and MARV challenge

3.) Phase I Safety and Immunogenicity of the mono-valent VesiculoVax™ EBOV Vaccine

4.) Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

5.) Future Plans
Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of NHPs</th>
<th>Dosing Material</th>
<th>Vaccine Dosage (PFU)</th>
<th>Vaccination (Day/Route)</th>
<th>Challenge 1,000 PFU MARV (Day/Route)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>7.5 x 10^6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7.5 x 10^5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7.5 x 10^4</td>
<td>0 / IM</td>
<td></td>
<td>42 / Aerosol</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7.5 x 10^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7.5 x 10^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>N4CT1-HIVgag(s1)</td>
<td>7.5 x 10^6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N=26

Goal: to achieve a wide range of:
- MARV GP-specific immune responses
- Post MARV challenge protection
Anti-EBOV GP ELISA titers

ELISA units/mL

Days post immunization

-20 -10 0 10 20 30 40

7.5 x 10^6
7.5 x 10^5
7.5 x 10^4
7.5 x 10^3
7.5 x 10^2
Control
Con
Anti-SUDV GP ELISA titers

ELISA units/mL

Days post immunization

-20 -10 0 10 20 30 40

7.5 x 10^6
7.5 x 10^5
7.5 x 10^4
7.5 x 10^3
7.5 x 10^2
Control

10^5
10^6
10^4
10^3
Con
Anti-MARV GP ELISA titers

ELISA units/mL

Days post immunization

-20 -10 0 10 20 30 40

7.5 \times 10^6
7.5 \times 10^5
7.5 \times 10^4
7.5 \times 10^3
7.5 \times 10^2
Control

10^6
10^5
10^3
Con
FiloGP-specific Neutralizing Ab Responses* (PRNT50) at Day 35

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Dose</th>
<th>Group</th>
<th>Animal ID</th>
<th>PRNT50 - Day 35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ebov</td>
</tr>
<tr>
<td>Tri-val N4CT1(6)GP(a1)</td>
<td>7.5 x 10^6</td>
<td>1</td>
<td>0912162</td>
<td>147.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>C65665</td>
<td>77.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>C62625</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>C64284</td>
<td>75.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>C68268</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>7.5 x 10^5</td>
<td>2</td>
<td>C69902</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>C56365</td>
<td>178.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>C71818</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>C65896</td>
<td>121.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>C66560</td>
<td>110.0</td>
</tr>
<tr>
<td></td>
<td>7.5 x 10^4</td>
<td>3</td>
<td>C65897</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>C64685</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>C69099</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>C66181</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>C65581</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>7.5 x 10^3</td>
<td>4</td>
<td>C65889</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>C66095</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>C64766</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>C65746</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>C65990</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>7.5 x 10^2</td>
<td>5</td>
<td>0912042</td>
<td>40.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>C66003</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>C68289</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>C69965</td>
<td>35.6</td>
</tr>
<tr>
<td>N4CT1-HIVgag(s1)</td>
<td>7.5 x 10^6</td>
<td>6</td>
<td>C66134</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>C69907</td>
<td>10.9</td>
</tr>
</tbody>
</table>

* Research assay
D35 (5wks post immunization) anti-Filo GP IFNγ ELISpot response

![Graph showing ELISpot response to different GP strains](image)

Responder Freq

- Zaire GP: 3/5 (60%)
- Sudan GP: 4/5 (80%)
- Marburg GP: 3/5 (60%)
- 1/5 (20%)
- 2/4 (50%)
- 0/2 (0%)
Post Challenge Survival (1,000 PFU AE MARV)
Determining a Correlate of Protection against 1,000 PFU AE MARV Challenge
Relationship between D35 anti-MARV ELISpot response and post challenge outcome

D35 Anti-MARV ELISpot Response (SFC/10^6 PBMCs)

‡ not challenged
Relationship between D35 anti-MARV Neut Ab titer and post challenge outcome

D35 Anti-MARV Neut Ab titers

‡ not challenged
Relationship between D35 anti-MARV ELISA titer and post challenge outcome
Univariate Logistic Regression Models Fitted to Immune Response Data

<table>
<thead>
<tr>
<th>Assay</th>
<th>Virus</th>
<th>Study Day</th>
<th>Slope Estimate</th>
<th>P-Value</th>
<th>False Discovery Rate Benjamini-Hochberg P-Value</th>
<th>Area Under Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>MARV</td>
<td>7</td>
<td>-0.7858</td>
<td>0.8256</td>
<td>0.9256</td>
<td>0.5313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.1315</td>
<td>0.0847</td>
<td>0.2541</td>
<td>0.7227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2.1322</td>
<td>0.0078*</td>
<td>0.0351*</td>
<td>0.9219</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>2.7562</td>
<td>0.0061*</td>
<td>0.0351*</td>
<td>0.9688</td>
</tr>
<tr>
<td>ELISPOT</td>
<td>MARV</td>
<td>14</td>
<td>2.8808</td>
<td>0.2862</td>
<td>0.4293</td>
<td>0.6250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>5.2777</td>
<td>0.1416</td>
<td>0.2657</td>
<td>0.6875</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>3.0389</td>
<td>0.1476</td>
<td>0.2657</td>
<td>0.6602</td>
</tr>
<tr>
<td>Neutralization</td>
<td>MARV</td>
<td>28</td>
<td>-0.1142</td>
<td>0.9256</td>
<td>0.9256</td>
<td>0.5273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>1.1052</td>
<td>0.4713</td>
<td>0.6060</td>
<td>0.5547</td>
</tr>
</tbody>
</table>

Only MARV GP-specific ELISA responses at study days 28 and 35 (p-values = 0.0078 and 0.0061, respectively) were shown to be significantly associated with survival.
Using an Immune Correlate to Gauge **Potential** Protective Efficacy of a Vaccine in Ph I/II Clinical samples

- Extrapolate an “threshold” MARV GP-specific ELISA response associated with 80%, 90% or 95% probability of survival

- Experimental vaccines capable of eliciting and / or maintaining an immune response above a pre-defined “protective” level might be expected to be efficacious and would warrant additional development
Presentation Outline:

1.) Background on the VesiculoVax™ Vaccine Platform

2.) Ability of a Single Dose Tri-valent VesiculoVax™ panFilo Vaccine to protect against EBOV, SUDV and MARV challenge

3.) Phase I Safety and Immunogenicity of the mono-valent VesiculoVax™ EBOV Vaccine

4.) Identification of a Correlate of Protection Against Aerosol MARV challenge in NHPs

5.) Future Plans
rVSV-MARV-01: Marburg Vaccine Phase I Study

Phase 1 Dose Escalation and Vaccination Schedule in Months (Days)

<table>
<thead>
<tr>
<th>Study Arm</th>
<th>N</th>
<th>Total Dose</th>
<th>Month 0 (Day 0)</th>
<th>Month 1 (Day 28)</th>
<th>Month 1 (Day 56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>10</td>
<td>2.5×10^4 PFU</td>
<td>rVSVN4CT1-MARVGP1</td>
<td>—</td>
<td>rVSVN4CT1-MARVGP1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>—</td>
<td>control (saline)</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>10</td>
<td>2.5×10^5 PFU</td>
<td>rVSVN4CT1-MARVGP1</td>
<td>—</td>
<td>rVSVN4CT1-MARVGP1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>—</td>
<td>control (saline)</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>10</td>
<td>2.0×10^6 PFU</td>
<td>rVSVN4CT1-MARVGP1</td>
<td>—</td>
<td>rVSVN4CT1-MARVGP1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>—</td>
<td>control (saline)</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>10</td>
<td>2.0×10^6 PFU</td>
<td>rVSVN4CT1-MARVGP1</td>
<td>rVSVN4CT1-MARVGP1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>control (saline)</td>
<td>control (saline)</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td></td>
<td>control (saline)</td>
<td>control (saline)</td>
<td>—</td>
</tr>
</tbody>
</table>

PFU = plaques forming units.
Work in-progress:

- **Development of a VesiculoVax™ Vaccine with >2 yr shelf life at room temperature**
 - rVSV-EBOV and rVSV-MARV lyophilized with ~75% retention of potency
 - rVSV-SUDV lyophilization development in progress

- **Development of a Quadra-valent VesiculoVax™ panFilo/Lassa Vaccine**
 - rVSVN4CT1-EBOV/SUDV/MARV/LASV has entered animal testing
Acknowledgements

John Eldridge, CSO

- David Clarke
- Stefan Hamm
- Demetrius Matassov
- Terri Latham
- Becky Nowak
- Cheryl Kotash
- Daniel Colon
- Luke Jasenosky
- Susan Witko
- Tracy Chen
- Marc Tremblay
- Alan Gordon
- Jeff Meshulam
- Loema Titanji
- Greg Goffreda
- Susan Sciotto-Brown
- Edens Lamarre

Battelle

- Nicole Kilgore
- Christopher Dorsey
- Callie Bounds
- Lucy Ward
- Chris Badorrek
- Clint Florence
- T Rudge
- Janice Rusnak

NIH/NIAID

- Michael Egan
- Rong Xu
- Ayuko Ota-Setlik
- Luz Hermeda
- Amara Luckay
- Hinna Akhtar
- Tony Conley
- Michael Pensiero
- Pat Repik
- David Clarke
- Stefan Hamm
- Demetrius Matassov
- Terri Latham
- Becky Nowak
- Cheryl Kotash
- Daniel Colon
- Luke Jasenosky
- Susan Witko
- Tracy Chen
- Marc Tremblay
- Alan Gordon
- Jeff Meshulam
- Loema Titanji
- Greg Goffreda
- Susan Sciotto-Brown
- Edens Lamarre

JPEO

- John Eldridge, CSO
- Thomas Geisbert
- Joan Geisbert
- K Agans
- Chad Mire
- K Fenton

NIH/NIAID

- NO1-AI-50010
- NO1-AI-05397
- RO1-AI-098817

JPEO

- Tony Conley
- Michael Pensiero
- Pat Repik

Yale University

- Jack Rose

utmb Health

- Working together to work wonders

The University of Texas Medical Branch at Galveston

- Medical Branch at Galveston

Unclassified/Approved for Public Release
Acknowledgements

The Profectus Ebola vaccine programs are supported by the U.S. Department of Defense Medical Countermeasures Systems—Joint Program Executive Office for Chemical and Biological Defense (JPEO-CBD) and Joint Vaccine Acquisition Program (MCS-JVAP) both directly and through contracts with Battelle, the Biomedical Advanced Research and Development Authority (BARDA), and the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.